MATH 245 S23, Exam 3 Solutions

1. Carefully define the following terms: $=$ (for sets), union.

Two sets are equal if they contain exactly the same elements. Given two sets S, T, their union (denoted $S \cup T$) is the set given by $\{x: x \in S \vee x \in T\}$.
2. Carefully define the following terms: disjoint, trichotomous

Two sets are disjoint if their intersection equals the empty set. Let R be a relation on set S.
We say that R is trichotomous if (either option is correct):
OPTION 1: $\forall x, y \in S,(x=y) \vee(x R y) \vee(y R x)$.
OPTION 2: $\forall x, y \in S,(x \not R y \wedge y \not R x) \rightarrow(x=y)$.
NOTE: For some reason, many of you wrote "disjointed" even though the word "disjoint" was written out for you right there. I did not take points off, but I am baffled. "disjoint" is a common word, why confuse it with a less common one? Here's what Google Ngram has to say:

3. Let S, U be sets with $S \subseteq U$. Prove that $S \subseteq\left(S^{c}\right)^{c}$

NOTE: This is part of Theorem 9.2. Do not use this theorem to prove itself!
Let $x \in S$ be arbitrary. We begin with double negation on $x \in S$ to get $\neg \neg x \in S$. Now, we apply addition to get $(\neg x \in U) \vee(\neg(\neg x \in S))$. We apply De Morgan's Law for propositions (Thm 2.11) to get $\neg(x \in U \wedge(\neg x \in S)$). Hence (by definition of complement), we get $\neg\left(x \in S^{c}\right)$. We now combine $x \in S$ with $S \subseteq U$ to get $x \in U$. By conjunction we get $x \in U \wedge \neg\left(x \in S^{c}\right)$. Finally (by definition of complement again), we get $x \in\left(S^{c}\right)^{c}$.
4. Let $R=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=8 y\}, S=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=20 y\}, T=\{x \in \mathbb{Z}: \exists y \in \mathbb{Z}, x=$ $4 y\}$. Prove or disprove that $R \cup S \subseteq T$.
The statement is true. A correct proof must start with letting $x \in R \cup S$ be arbitrary. Then $x \in R \vee x \in S$. We now have two cases.
Case $x \in R$: Hence there is $y \in \mathbb{Z}$ with $x=8 y$. We write $x=4(2 y)$, and $2 y \in \mathbb{Z}$, so $x \in T$.
Case $x \in S$: Hence there is $y \in \mathbb{Z}$ with $x=20 y$. We write $x=4(5 y)$, and $5 y \in \mathbb{Z}$, so $x \in T$.
Hence, in both cases, $x \in T$.
5. Let S, T be sets. Prove that $S \Delta T=T \Delta S$.

NOTE: This is part of Theorem 8.13. Do not use this theorem to prove itself!
Part 1 (proving $S \Delta T \subseteq T \Delta S)$: Let $x \in S \Delta T$. Then $(x \in S \wedge x \notin T) \vee(x \notin S \wedge x \in T)$. By commutativity of $\vee, \wedge(T h m 2.8)$, we get $(x \in T \wedge x \notin S) \vee(x \notin T \wedge x \in S)$. Hence $x \in T \Delta S$. Part 2 (proving $T \Delta S \subseteq S \Delta T)$: Let $x \in T \Delta S$. Then $(x \in T \wedge x \notin S) \vee(x \notin T \wedge x \in S)$. By commutativity of \vee, \wedge again, we get $(x \in S \wedge x \notin T) \vee(x \notin S \wedge x \in T)$. Hence $x \in S \Delta T$.
NOTE: Some of you used a variation of the definition, e.g. $(x \in S \wedge x \notin T) \vee(x \in T \wedge x \notin S)$. This was fine, provided you used the exact same version consistently throughout.
6. Find a set S such that $S \times\left(S \cap 2^{S}\right)$ is nonempty. Give S carefully, in list notation, and justify your answer.
Many solutions are possible. The key is to make $S \cap 2^{S}$ nonempty, i.e. for S to contain at least one of its own subsets. Notation and explanation are very important.
SOLUTION 1: Take $S=\{3,\{3\}\}$. Now $2^{S}=\{\emptyset,\{3\},\{\{3\}\}, S\}$, so $S \cap 2^{S}=\{\{3\}\}$. Hence $S \times\left(S \cap 2^{S}\right)=\{(3,\{3\}),(\{3\},\{3\})\}$, which is nonempty since it contains $(3,\{3\})$.
SOLUTION 2: Take $S=\{\emptyset\}$. Now $2^{S}=\{\emptyset,\{\emptyset\}\}$, so $S \cap 2^{S}=\{\emptyset\}$. Hence $S \times\left(S \cap 2^{S}\right)=$ $\{(\emptyset, \emptyset)\}$, which is nonempty since it contains (\emptyset, \emptyset).
7. Set $R=\{1,2\}$, and $S=\mathbb{N}$. Prove or disprove that $|R \times S|=|S|$.

The statement is true, and to prove it we need a pairing between the elements of $R \times S$ and S. The natural one is: $(a, b) \leftrightarrow a+2 b-2$. The first few pairings are:
$(1,1) \leftrightarrow 1,(2,1) \leftrightarrow 2,(1,2) \leftrightarrow 3,(2,2) \leftrightarrow 4,(1,3) \leftrightarrow 5,(2,3) \leftrightarrow 6,(1,4) \leftrightarrow 7, \ldots$.
Some of you used this same pairing, but wanted to reverse the formula using cases.
$n \leftrightarrow\left\{\begin{array}{ll}\left(1,\left\lceil\frac{n}{2}\right\rceil\right) & n \text { odd } \\ \left(2,\left\lceil\frac{n}{2}\right\rceil\right) & n \text { even }\end{array} \quad 1 \leftrightarrow(1,1), 2 \leftrightarrow(2,1), 3 \leftrightarrow(1,2), 4 \leftrightarrow(2,2), \ldots\right.$
For the remaining problems $8-10$, let $S=\{a, b\}$ and $T=2^{S}$. Define relation R on T via $R=\{(x, y): x \cap y=\emptyset\}$. Each of these problems has two parts.
8. Prove or disprove that R is symmetric. Also, prove or disprove that R is reflexive.
R is symmetric: Let $x, y \in T$ be arbitrary. Suppose that $x R y$. Then $x \cap y=\emptyset$. By commutativity of \cap (Thm. 8.13), $y \cap x=x \cap y=\emptyset$. Hence $y R x$.
R is not reflexive: Take $x=\{a\} \in T$. We have $x \cap x=\{a\} \neq \emptyset$, so $(x, x) \notin R$.
(other counterexamples are possible)
9. Draw the digraph for relation R. Also, determine $|R|$.

We count directed edges to see that $|R|=9$.
10. Prove or disprove that R is transitive. Also, prove or disprove that $R^{(2)}=T \times T$. R is not transitive. We need a counterexample: $\{a, b\} R \emptyset$ and $\emptyset R\{a\}$ and $\{a, b\} \not R\{a\}$.
$R^{(2)}=T \times T$ is true. First, $R^{(2)} \subseteq T \times T$ is true since $R^{(2)}=R \circ R$ is a relation on T.
For the other direction, let $(x, y) \in T \times T$ be arbitrary. We have $x \cap \emptyset=\emptyset$, so $x R \emptyset$. We have $\emptyset \cap y=\emptyset$, so $\emptyset R y$. Since $(x, \emptyset),(\emptyset, y) \in R$, we have $(x, y) \in R^{(2)}$.

