
MATH 245 S23, Exam 3 Solutions

1. Carefully define the following terms: = (for sets), union.
Two sets are equal if they contain exactly the same elements. Given two sets S, T , their union
(denoted S ∪ T ) is the set given by {x : x ∈ S ∨ x ∈ T}.

2. Carefully define the following terms: disjoint, trichotomous
Two sets are disjoint if their intersection equals the empty set. Let R be a relation on set S.
We say that R is trichotomous if (either option is correct):
OPTION 1: ∀x, y ∈ S, (x = y) ∨ (xRy) ∨ (yRx).
OPTION 2: ∀x, y ∈ S, (x 6Ry ∧ y 6Rx)→ (x = y).

NOTE: For some reason, many of you wrote “disjointed” even though the word “disjoint”
was written out for you right there. I did not take points off, but I am baffled. “disjoint” is a
common word, why confuse it with a less common one? Here’s what Google Ngram has to say:

3. Let S,U be sets with S ⊆ U . Prove that S ⊆ (Sc)c

NOTE: This is part of Theorem 9.2. Do not use this theorem to prove itself!

Let x ∈ S be arbitrary. We begin with double negation on x ∈ S to get ¬¬x ∈ S. Now,
we apply addition to get (¬x ∈ U) ∨ (¬(¬x ∈ S)). We apply De Morgan’s Law for propo-
sitions (Thm 2.11) to get ¬(x ∈ U ∧ (¬x ∈ S)). Hence (by definition of complement), we
get ¬(x ∈ Sc). We now combine x ∈ S with S ⊆ U to get x ∈ U . By conjunction we get
x ∈ U ∧ ¬(x ∈ Sc). Finally (by definition of complement again), we get x ∈ (Sc)c.

4. Let R = {x ∈ Z : ∃y ∈ Z, x = 8y}, S = {x ∈ Z : ∃y ∈ Z, x = 20y}, T = {x ∈ Z : ∃y ∈ Z, x =
4y}. Prove or disprove that R ∪ S ⊆ T .

The statement is true. A correct proof must start with letting x ∈ R ∪ S be arbitrary. Then
x ∈ R ∨ x ∈ S. We now have two cases.
Case x ∈ R: Hence there is y ∈ Z with x = 8y. We write x = 4(2y), and 2y ∈ Z, so x ∈ T .
Case x ∈ S: Hence there is y ∈ Z with x = 20y. We write x = 4(5y), and 5y ∈ Z, so x ∈ T .
Hence, in both cases, x ∈ T .



5. Let S, T be sets. Prove that S∆T = T∆S.
NOTE: This is part of Theorem 8.13. Do not use this theorem to prove itself!

Part 1 (proving S∆T ⊆ T∆S): Let x ∈ S∆T . Then (x ∈ S ∧ x /∈ T ) ∨ (x /∈ S ∧ x ∈ T ). By
commutativity of ∨,∧ (Thm 2.8), we get (x ∈ T ∧x /∈ S)∨ (x /∈ T ∧x ∈ S). Hence x ∈ T∆S.
Part 2 (proving T∆S ⊆ S∆T ): Let x ∈ T∆S. Then (x ∈ T ∧ x /∈ S) ∨ (x /∈ T ∧ x ∈ S). By
commutativity of ∨,∧ again, we get (x ∈ S ∧ x /∈ T ) ∨ (x /∈ S ∧ x ∈ T ). Hence x ∈ S∆T .

NOTE: Some of you used a variation of the definition, e.g. (x ∈ S∧x /∈ T )∨ (x ∈ T ∧ x /∈ S).
This was fine, provided you used the exact same version consistently throughout.

6. Find a set S such that S × (S ∩ 2S) is nonempty. Give S carefully, in list notation, and justify
your answer.

Many solutions are possible. The key is to make S ∩ 2S nonempty, i.e. for S to contain at
least one of its own subsets. Notation and explanation are very important.
SOLUTION 1: Take S = {3, {3}}. Now 2S = {∅, {3}, {{3}}, S}, so S ∩ 2S = {{3}}. Hence
S × (S ∩ 2S) = {(3, {3}), ({3}, {3})}, which is nonempty since it contains (3, {3}).
SOLUTION 2: Take S = {∅}. Now 2S = {∅, {∅}}, so S ∩ 2S = {∅}. Hence S × (S ∩ 2S) =
{(∅, ∅)}, which is nonempty since it contains (∅, ∅).

7. Set R = {1, 2}, and S = N. Prove or disprove that |R× S| = |S|.
The statement is true, and to prove it we need a pairing between the elements of R× S and
S. The natural one is: (a, b)↔ a + 2b− 2. The first few pairings are:
(1, 1)↔ 1, (2, 1)↔ 2, (1, 2)↔ 3, (2, 2)↔ 4, (1, 3)↔ 5, (2, 3)↔ 6, (1, 4)↔ 7, . . ..

Some of you used this same pairing, but wanted to reverse the formula using cases.

n↔

{
(1, dn2 e) n odd

(2, dn2 e) n even
1↔ (1, 1), 2↔ (2, 1), 3↔ (1, 2), 4↔ (2, 2), . . .

For the remaining problems 8-10, let S = {a, b} and T = 2S . Define relation R on T via
R = {(x, y) : x ∩ y = ∅}. Each of these problems has two parts.

8. Prove or disprove that R is symmetric. Also, prove or disprove that R is reflexive.
R is symmetric: Let x, y ∈ T be arbitrary. Suppose that xRy. Then x ∩ y = ∅. By commu-
tativity of ∩ (Thm. 8.13), y ∩ x = x ∩ y = ∅. Hence yRx.
R is not reflexive: Take x = {a} ∈ T . We have x ∩ x = {a} 6= ∅, so (x, x) /∈ R.
(other counterexamples are possible)

9. Draw the digraph for relation R. Also, determine |R|.
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We count directed edges to see that |R| = 9.

10. Prove or disprove that R is transitive. Also, prove or disprove that R(2) = T × T .
R is not transitive. We need a counterexample: {a, b}R∅ and ∅R{a} and {a, b} 6R{a}.
R(2) = T × T is true. First, R(2) ⊆ T × T is true since R(2) = R ◦R is a relation on T .
For the other direction, let (x, y) ∈ T × T be arbitrary. We have x∩ ∅ = ∅, so xR∅. We have
∅ ∩ y = ∅, so ∅Ry. Since (x, ∅), (∅, y) ∈ R, we have (x, y) ∈ R(2).


